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Introduction
Neuroblastoma (NB) is the most common pediatric extracranial solid tumor that develops from neural 
crest-derived cells and arises in the developing peripheral sympathetic nervous system (1). At the time of  
diagnosis, approximately 50% of  the patients have metastasis, and more than 90% of  patients with metastat-
ic disease have disseminated tumor cells within the bone and BM (2). The 5-year overall survival for patients 
with localized and low-risk NB is 90% (3), in contrast to 50% for patients with high-risk NB, and survival 
outcomes drop to less than 10% for patients with relapsed metastatic disease (4, 5). Despite the prevalence of  
bone metastases in patients with NB, little is known about the mechanism of  BM invasion in NB.

Previous single-cell RNA-Seq (scRNA-Seq) studies have unraveled the cell identities, phenotypes, and 
gene regulatory networks of  tumor cells in primary NB (6–9). The neural crest–sympathoadrenal develop-
ment, the lineage from which NB is thought to originate, has also been elucidated by lineage tracing studies 
in mice and by scRNA-Seq of  murine and human fetal adrenal gland tissue (7, 9). Deciphering NB tumor 
cell heterogeneity is important to fully understand their metastatic potential (10).

Another important aspect in understanding disease progression and metastasis lies in elucidating 
the immune cells infiltrating the tumors. Clinical reports have demonstrated therapy resistance in NB 

Neuroblastoma is an aggressive pediatric cancer with a high rate of metastasis to the BM. Despite 
intensive treatments including high-dose chemotherapy, the overall survival rate for children with 
metastatic neuroblastoma remains dismal. Understanding the cellular and molecular mechanisms 
of the metastatic tumor microenvironment is crucial for developing new therapies and improving 
clinical outcomes. Here, we used single-cell RNA-Seq to characterize immune and tumor cell 
alterations in neuroblastoma BM metastases by comparative analysis with patients without 
metastases. Our results reveal remodeling of the immune cell populations and reprogramming of 
gene expression profiles in the metastatic niche. In particular, within the BM metastatic niche, we 
observed the enrichment of immune cells, including tumor-associated neutrophils, macrophages, 
and exhausted T cells, as well as an increased number of Tregs and a decreased number of B cells. 
Furthermore, we highlighted cell communication between tumor cells and immune cell populations, 
and we identified prognostic markers in malignant cells that are associated with worse clinical 
outcomes in 3 independent neuroblastoma cohorts. Our results provide insight into the cellular, 
compositional, and transcriptional shifts underlying neuroblastoma BM metastases that contribute 
to the development of new therapeutic strategies.
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to T cell infiltration (11), while it remains unclear whether certain T cell subtypes have prognostic value 
(12). Additionally, clonal expansion was only revealed in a small number of  untreated patients with NB 
by performing T receptor sequencing (13, 14), indicating that only a limited number of  patients may 
present with tumor antigen response. Preclinical and clinical observations associated myeloid-derived 
suppressor cells (MDSCs) with poor prognosis (15, 16). The observations of  the role that immune cells 
have in NB contributed to the foundation of  immunotherapy resulting in the addition of  anti-GD2 
immunotherapy as a combination with the standard treatment of  patients with high-risk NB (17). While 
immune cell populations have been investigated in NB, most studies have focused on the primary tumor 
(2, 15) or were restricted to specific immune cell subtypes (18). A systemic characterization of  metastat-
ic BM in patients with NB, as well as comparison of  the metastatic tumor versus the primary tumor at 
single-cell resolution, is still lacking.

Tumor metastasis is a complex and dynamic process that involves genetic and epigenetic alterations, cell-
to-cell interactions, and microenvironment changes. Both tumor cells and the host microenvironment play 
important roles in the metastatic cascade. Multiple immune cell populations are enriched in the BM niche (19) 
and have been shown to be involved in cancer progression (20). The niche may favor quiescence and promote 
immune escape, allowing for tumor progression and metastasis (21). In this study, we used single-cell transcrip-
tomics to characterize the NB BM metastatic microenvironment, performed a comparative analysis between 
nonmetastatic and metastatic BM from patients with NB, and highlighted potential key cellular populations 
and transcriptional changes involved in NB progression and metastasis. Our data provide an improved under-
standing of the NB BM metastatic microenvironment that can be exploited for future therapies.

Results
Single-cell transcriptomic profiling of  BM from patients with NB, with and without metastases. To elucidate the 
changes in BM microenvironment cellular composition that accompany NB metastases (compared with 
the BM of  patients with nonmetastatic NB), fresh patient tissue samples were systematically collected 
for cell isolation, FACS, and transcriptomic analysis. We used the 10X Genomics platform to profile the 
single-cell transcriptome, including 7 nonmetastatic and 8 metastatic BM samples (Figure 1A). Metastatic 
disease, or lack of  tumor cells in the BM, was confirmed by pathologic evaluation of  stained sections. 
Detailed clinicopathological information is provided in Supplemental Table 1 (supplemental material avail-
able online with this article; https://doi.org/10.1172/jci.insight.173337DS1). After data quality control 
and doublets removal, 37,406 cells were retained for subsequent analysis, in which 19,565 cells originated 
from nonmetastatic BM samples and 17,841 cells originated from BM metastatic samples. scRNA-Seq data 
were integrated using Conos (22). We projected the cells to a unified Uniform Manifold Approximation 
and Projection (UMAP) embedding space and then performed graph-based clustering. Major cell popula-
tions were annotated with their respective markers (Supplemental Table 3).

The cells were classified into 13 major cell types (Figure 1B), including T cells (CD3D, CD3E), NK 
cells (KLRF1, KLRC1, XCL2), erythroid (HBB, HBD), myeloid cells (LYZ, S100A9, VCAN), neutrophils 
(LTF, LCN2, CAMP), plasmacytoid DCs (pDC) (IRF8, CLEC4C), B cells (CD79A, CD79B), plasma cells 
(CD79A, IGHG1, IGHA1), and progenitor cells (SPINK2, RUNX1) (Figure 1C). Tumor cells were char-
acterized by high expression of  NB tumor signature genes (PHOX2B, HAND2, STMN2, and KCNQ2) 
(6), which were exclusively expressed in the BM of  metastatic patients with NB (Figure 1D and Supple-
mental Figure 1, A and B). We also confirm the presence of  tumor cells in NB bone metastatic samples 
using flow cytometry (Supplemental Figure 1C).

In addition, we performed inferCNV (23) analysis to confirm malignancy of  tumor cells, showing 
notable copy number variations (CNVs) (Figure 1E). To identify the tumor cell state identity, we aligned 
metastatic BM data with primary NB scRNA-Seq data from previous studies (24). Metastatic tumor cells 
clustered with adrenergic cells and showed high expression of  adrenergic signature genes PHOX2B, MDK, 
and KCNQ2 (Figure 1, D and F). The presence of  metastases significantly altered the immune cell com-
position of  the BM. Notably, there was a trend toward an increased proportion of  T cells and neutrophils 
and a trend toward a decreased proportion of  B cells populations in the BM microenvironment of  met-
astatic cases compared with nonmetastatic samples (Figure 1, B and G). Decreased B cell numbers were 
further confirmed by flow cytometry (Supplemental Figure 2, A and B).

Analysis of  myeloid cells identified tumor-associated neutrophils and macrophages involved in metastatic BM. Since 
myeloid cells have been shown to play an important role in the tumor progression and metastasis (15, 25), 
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Figure 1. Overview of tumor microenvironment of neuroblastoma nonmetastatic and bone metastatic tumors. (A) An illustration depicting the 
experimental design. (B) Integrative analysis of scRNA-Seq samples from 15 NB BM samples visualized using a common UMAP embedding for NB bone 
metastatic (left), NB bone nonmetastatic samples (middle), and sample fraction. (C) Heatmap showing expression of markers for major cell populations. 
(D) Violin plot showing representative marker gene expression for tumor cells. (E) Inferred CNV profile of tumor cells from NB bone metastatic tumor. 
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we performed a detailed analysis of the myeloid cell composition. Focused analysis of the myeloid cell com-
partment revealed 7 major clusters: macrophages (C1QA, C1QB IFITM3, SIGLEC10), myelocytic DCs (mDC) 
(CLEC10A, CD1C, FCER1A), monocyte populations (Mono-1: CD9, CTSS; Mono-2: SELL, LYZ; ref. 26), pro-
genitor myeloid cells (MPO, MKI67, ELANE, AZU1), and neutrophil populations (Neutrophil-1: PGLYRP1, 
LCN2, LTF; Neutrophil-2: AQP9, FCGR3B, VNN2, CMTM2) (Figure 2, A and B). Notably, the proportion of  
neutrophils increased in the metastatic samples (Figure 2C and Supplemental Figure 3A), transcriptionally 
resembling tumor-associated neutrophils (TAN) (27–29), with a high expression of VEGFA, LGALS3, OLR1, 
PROK2, MMP9, and IL1RN (Supplemental Figure 3, B and C). VEGFA are known to be proangiogenic factors. 
MMP9 has been shown to play a crucial role in the angiogenic switch during tumor progression (30). Tumor-in-
filtrating neutrophils in colorectal cancer highly expressed PROK2, which is also involved in promoting angio-
genesis (31). OLR1 is associated with oxidized low-density lipoprotein, which has been described as a marker 
for distinguishing polymorphonuclear MDSCs (PMN-MDSCs) (32). Based on this observation, it is likely that 
TAN play a significant role in promoting angiogenesis and may contribute to tumor progression and metastasis 
by releasing proangiogenic factors and modulating inflammatory responses in the tumor microenvironment.

Our analysis revealed 2 TAN subtypes in the metastatic BM microenvironment. Recent high-resolution 
single-cell studies demonstrated diversity and plasticity of  tissue-resident neutrophils in non–small cell lung 
cancer and liver cancer (27, 28). Neutrophils can inhibit tumor growth through release of  reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) (33). The expression of  these molecules was not detected 
in the TAN from our data (Figure 2D), suggesting impaired antitumor activity. The Neutrophil-1 population 
expressed LCN2, LTF, CAMP, and MMP8. Neutrophil-2 was marked by high expression of  CSF3R, CMTM2, 
VNN2, AQP9, MMP9, MMP25, CXCR1, and CXCR2 (Figure 2E and Supplemental Figure 3C). As one of  the 
inflammatory immune cell subtypes, neutrophils express chemokine receptors CXCR1 and CXCR2 (Figure 
2D). Neutrophils expressing these molecules are attracted by chemokines produced by tumor cells that infil-
trate the tumor microenvironment to form tumor-promoting activity (34, 35). Therapeutic strategies to target 
the CXCR-1/CXCR-2 axis or combination with immunotherapy have been proposed to improve antitumor 
efficacy in pancreatic cancer, metastatic melanoma, and metastatic colorectal carcinoma (35, 36). In addition, 
TAN can promote angiogenesis and dissemination of  tumor cells by producing matrix metalloproteinases 
like MMP9 and MMP25 (37, 38), which were expressed in Neutrophil-2 (Supplemental Figure 3C).

Neutrophils originate from granulocyte progenitors (GMPs) in the BM (39). Therefore, we sought to 
dissect potential cellular trajectories for neutrophils. Our scRNA-Seq data reveal the hierarchical connec-
tion of  neutrophil and myeloid progenitors, which suggests a trajectory from common myeloid progenitors 
toward Neutrophil-2 cell populations in metastatic BM (Figure 2F). Analysis of  a transcriptional profile 
shows a continuous gene expression program associated with pseudotime (Figure 2G). Genes related to 
GMPs such as MPO, ELANE, and AZU1 (39) and proliferating marker MKI67 started to be expressed in the 
progenitor myeloid cells (Figure 2, F and G). Neutrophil-1 was marked by peak expression of  granule genes 
such as CAMP, LCN2, and LTF previously tied to differentiating neutrophils (40). Neutrophil-2 are mature 
neutrophils labeled by high expression of  CXCR2 and VNN2 (39) (Figure 2G and Supplemental Figure 3D). 
Notably, genes related to neutrophil migration and survival such as NAMPT (41), CMTM2 (42), and CD177 
(43) showed increased gene expression and peak in Neutrophil-2 (Figure 2G and Supplemental Figure 3D). 
In summary, our in silico analyses demonstrate that neutrophils exhibit continuous trajectory within the 
metastatic BM microenvironment in NB.

The macrophage proportion also significantly increased in the metastatic samples compared with the 
nonmetastatic samples. On the contrary, the Mono-2 proportion decreased in the metastatic compartment 
(Supplemental Figure 3A). Our previous study on the primary NB immune microenvironment defined 
heterogenous subpopulations of  tumor-associated macrophages (TAM) and monocytes (15, 24). We com-
pared metastatic tumor myeloid cell compartments with localized primary NB tumors. Surprisingly, we 
found distinguished myeloid lineages in the primary and metastatic NB microenvironment. Myeloid pro-
genitors and neutrophils were only present in the metastatic BM, while macrophages were predominantly 
enriched in the primary NB tumors (Figure 2H). Additionally, macrophages showed different phenotypes, 

(F) UMAP embedding showing joint integration of cells from NB bone metastatic tumor (left; n = 15) and NB primary tumor (middle; n = 17). (G) Box plot 
comparing proportion of major cell populations between metastatic (n = 8) and non- metastatic (n = 7) samples. Significance was assessed using 2-sided 
Wilcoxon ranked-sum test (*P < 0.05, **P < 0.01). For box plots, the center line represents the median, box limits represent upper and lower quartiles, and 
whiskers depicts 1.5 × the interquartile range (IQR).
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Figure 2. Myeloid cells characterization, enrichment, and differentiation trajectory. (A) Joint embedding represent the detailed annotation of myeloid 
cell subpopulations. (B) Dot plot demonstrating marker gene expression across different myeloid subpopulations. The color represents scaled average 
expression of marker genes in each cell type, and the size indicates the proportion of cells expressing marker genes. (C) Comparison of Neutrohil-1 and 
Neutrohil-2 proportion in NB bone metastatic (n = 7) and NB bone nonmetastatic (n = 7) samples. Statistics are accessed with 2-sided Wilcoxon ranked-
sum test (*P < 0.05). For box plots, the center line represents the median, box limits represent upper and lower quartiles, and whiskers depicts 1.5 × the 
interquartile range (IQR). (D) UMAP embedding showing representative gene expression for neutrophiles. (E) Violin plot showing representative marker 
gene expression for 2 neutrophil subpopulations. (F) Estimated trajectory tree moving from promyeloid cells to Neutrophil-1 and Neutrophil-2 (top). Trajec-
tory analysis demonstrates MKI67, CAMP, VNN2, and CMTM2 expression across pseudotime (bottom). (G) Heatmap showing the gene expression dynamics 
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where macrophages in primary NB tumors transcriptionally resembled tissue-resident macrophages, with 
high expression of  markers such as TREM2, FOLR2, and CD163 (44, 45). TREM2, FOLR2, and CD163 are 
all markers found on tumor-associated M2 macrophages in adult cancer and have been shown to suppress 
the immune response and promote tumor growth (44–46) (Supplemental Figure 3E). In contrast, upreg-
ulated genes in BM-derived macrophages from metastatic BM were related to cell cycle and cell division 
(CDKN1C, CDKN2D, RAC1, TUBA1A) (Figure 2, I and J). These results suggest that different macrophage 
subtypes are in the site of  the primary tumor compared with the BM of  metastatic patients with NB. 
Overall, single-cell analysis of  myeloid lineage identified increased numbers of  neutrophils, with a TAN 
phenotype that activates genes involved in BM TAN differentiation and maturation as well as macrophage 
abundance in the metastatic BM microenvironment.

Increased abundance of  tumor-infiltrating CTLs and Tregs contributes to an immunosuppressive microenviron-
ment. The BM is a primary reservoir site for immature T cells (19). To investigate T cell populations in 
metastatic BM patient samples, we performed unsupervised clustering on T cells and identified 6 distinct 
populations (Figure 3A), including 2 types of  CTLs (CTL-1 and CTL-2; CD8A, GZMB, PRF1, GZMK), 
Tregs identified by the expression of  FOXP3 and IL2RA, naive T cells marked by SELL and CCR7, and 
Th cells identified by CD4 and CCR7. CTL-1 and CTL-2 expressed different cytotoxic markers; CTL-1 
showed high expression of  GZMB, GZMH and PRF1, whereas CTL-2 was featured by GZMK, CXCR6, 
and CD27, indicating that these have a tissue resident memory phenotype (Figure 3, B and C). Both the 
CTL-1 and CTL-2 proportion increased in tumor metastatic niche, implying recruitment of  T cells into 
the tumor metastatic microenvironment (Figure 3D). CTLs are known to target tumor cells via T cell 
receptor interaction with MHC class I and kill tumor cells through induction of  apoptosis (47). However, 
in tumors, exhausted T cells have a decreased capacity to successfully eliminate tumor cells. To further 
analyze CTL cell states, we evaluated the T cell exhaustion gene signature score, where we detected a 
significantly increased level of  expression in CTLs compared with other T cell subtypes, which is to be 
expected (19, 48) (Figure 3E and Supplemental Figure 4, A and B). We also evaluated individual genes 
playing important roles in exhaustion, comparing nonmetastatic and metastatic tumor CTLs. We showed 
significantly increased expression of  TOX, NR4A3, LAG3, and EOMES in CTL-1 derived from metastatic 
samples, whereas CTL-2 from metastatic samples had significantly higher expression of  all 3 NR4A genes 
tested in addition to HAVCR2 and LAG3 (Supplemental Figure 4C). Moreover, we performed flow cyto-
metric analysis on 4 NB BM samples from the same patient cohort analyzed by scRNA-Seq and showed 
increased number of  CD8+PD-1+ T cells in the metastatic sample compared with the nonmetastatic sam-
ple (Supplemental Figure 4, E and F). The upregulation of  PD-1 alone is no conclusive indicator of  T 
cell exhaustion, and we had a limited number of  available patient samples. Therefore, we can conclude 
that we detected CTLs with increased expression of  exhaustion-related genes in the metastatic BM niche 
compared with those derived from nonmetastatic BM. Additional functional analysis is needed to provide 
conclusive evidence regarding exhaustion in CTLs in the metastatic NB BM.

Besides CTLs, we also observed a trend of  decreased naive T cells and increased Tregs in the meta-
static BM (Supplemental Figure 4D). Studies have shown that high levels of  Tregs can support the growth 
of  metastatic tumors (49), a finding consistent with our data demonstrating a significantly increased Treg 
activity signature score in metastatic Tregs compared with Tregs from nonmetastatic BM (Figure 3F). 
Furthermore, differential gene expression analysis showed upregulation of  TNFRSF4, TNFRSF18, ICOS, 
and TGFB1 in metastatic BM compared with nonmetastatic BM (Figure 3G). TGFB1 is a cytokine that 
is produced by Tregs and plays a key role in the suppression of  immune responses (50). Costimulatory 
molecules ICOS, TNFRSF4, and TNFRSF18 are expressed on the surface of  tumor-infiltrated Tregs and 
favor suppressive function of  Tregs (51, 52). Increased expression of  these molecules is known to result 
in increased activation and proliferation of  Tregs, which could lead to a more effective suppression of  
tumor-associated immune responses, thus possibly contributing to tumor progression and metastasis (52, 
53). Collectively, our data reveal an increase in tumor-infiltrating CTLs and Tregs that contributed to an 
immunosuppressive metastatic BM microenvironment in patients with NB.

with pseudotime. Representative genes are shown for each cellular state along the cell differentiation. (H) Joint alignment of myeloid cells from NB bone 
metastatic tumor and NB primary tumor, visualized in UMAP embedding. (I) DEGs of macrophage comparing NB bone metastatic tumor with NB primary 
tumor, shown as volcano plot. The vertical dashed lines show the cut-off for gene filtering (log2FC 2 and −2), and the horizontal dashed lines signify adjust-
ed P values of 0.01. (J) Enriched GO terms for DEGs from I. The statistical analysis was done using a hypergeometric test.
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Unveiling the heterogeneity of  NK and B cell subpopulations in metastatic BM. A characterization of NK and B 
cell subpopulations within the metastatic BM microenvironment could increase our understanding of the role 
of these cells in modulating the immune response and potentially in improving the response to immunotherapy 
in these patients. Clustering of NK cells revealed 5 subpopulations (Figure 4A and Supplemental Figure 5A). 

Figure 3. Increased abundance of tumor-infiltrating CTLs and Tregs in NB bone metastasis tumor. (A) UMAP embedding demonstrating T cell subpopulations 
(left) and sample fraction (right). (B) Dot plot demonstrating marker gene expression across different T cell populations. The color represents scaled average 
expression of marker genes in each cell type, and the size indicates the proportion of cells expressing marker genes. (C) Heatmap showing DEG in CTL-1 and 
CTL-2. (D) Comparison of CTL-1 and CTL-2 abundance in NB bone metastatic (n = 7) and NB bone nonmetastatic (n = 6) samples. Statistics are accessed with 
2-sided Wilcoxon ranked-sum test (*P < 0.05). (E) Box plots showing T cell exhaustion score among different T cell subpopulations. Statistics are accessed with 
Wilcoxon ranked-sum test and Benjamini-Hochberg multiple-comparison correction (*P < 0.05). (F) Box plots illustrate significant increase of Treg activity in the 
metastatic tumor (NB bone metastatic, n = 7; nonmetastatic, n = 7). Statistics are accessed using 2-sided Wilcoxon ranked-sum test (*P < 0.05). For box plots 
(D–F), the center line represents the median, box limits represent upper and lower quartiles, and whiskers depicts 1.5 × the interquartile range (IQR). (G) Violin 
plots showing scaled log-normalized expression values of key genes in Tregs. A 2-sided Wilcoxon ranked-sum test was used for statistical analysis.
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NKT cells showed high expression of NKG7, NCAM1, TBX21, CD8A, CD8B, and GZMH. Active NK cells were 
marked by CD7, CXCR4, IL2RB, CD69, and KLRB1. We found 2 subpopulations of CD56dim NK cells, CD56dim-1 
(FCGR3A, SPON2) and CD56dim-2 (FCGR3A, KLRK1, ZEB2) (Figure 4B and Supplemental Figure 5A). Fur-
ther analysis revealed that CD56dim-2 represented a terminally differentiated cell state with high expression of  
HAVCR2 and ZEB2 (54). CD56dim-2 also show high expression of KLRK1, which is one of the main NK cells 
activating receptor involved in antitumor activity (55). We observed a decrease of CD56dim-2 cell abundance in 
the metastatic BM. We also found that the CD56bright (CD56, TCF7, CCR7 and SELL) population was significant-
ly increased in the metastatic BM (Figure 4C). This was accompanied with a significant change in differentially 
expressed genes (DEGs) in the CD56bright population (Figure 4D and Supplemental Figure 5B). Downregulated 
genes were enriched for functions related to leukocyte activation, NKT cell differentiation, and α-β T cell acti-
vation (Figure 4E). Specifically, NK cell activating and stimulatory receptors CD160 and CD69 (56, 57) were 
significantly decreased in expression in metastatic BM compared with nonmetastatic CD56bright cells, while the 
inhibitory receptor KLRC1 (58) expression significantly increased in metastatic BM (Figure 4F). These findings 
suggest that the function of NK CD56bright cells in the tumor BM metastatic environment is suppressed.

B cell development takes place in the BM. To investigate the B cell subtypes in our data set, we 
reclustered B cells to reveal 7 subpopulations: active B cells (CD79A, MS4A1, BANK1), memory B cells 
(CLECL1, ZBTB32), naive B cells (CD38, IGLL1, CD69), pre–B progenitors (CD79A, MKI67, TOP2A), 
pre/pro–B progenitors (IL7R, CD99, SOX4, LEF1), pro–B progenitors (VPREB3, GNG11, PECAM1, 
RAG1, RAG2, DNTT), and plasma cells (JCHAIN, IGHG3, IGHG1, CD27) (59, 60) (Figure 4, G and H, 
and Supplemental Figure 5C). Compared with nonmetastatic BM, the metastatic BM microenviron-
ment showed a significantly decreased proportion of  B cells, by scRNA-Seq and flow cytometry, possi-
bly impairing B cell–mediated antitumor responses in patients with NB with metastatic BM (Figure 4G, 
and Supplemental Figure 2, A and B).

A transcriptional metastatic NB signature predicts patient survival. During metastasis, cancer cells dissem-
inate from the primary tumor spread and colonize distant organs. We compared transcriptomic alter-
ations of  primary NB tumor cells to bone metastatic tumor cells with the hypothesis that a gene signature 
may be indicative of  tumor progression and metastasis. Differential gene expression analysis revealed 
upregulated genes in metastatic BM tumor cells related to E2F targets, oxidative phosphorylation, and 
mTORC1 signaling as well as MYC targets (Figure 5A). mTORC1 is a major regulator of  cell prolifera-
tion and motility and, thus, can play a role in the invasion and metastasis of  tumors (61). Oxidative phos-
phorylation is one of  the major pathways for ATP production. Tumor cells rely on oxidative phosphor-
ylation to obtain the energy they need to migrate, invade, and establish new colonies in distant tissues 
(62). MYC and E2F activation can lead to increased tumor cell proliferation, migration, and invasion, 
which can contribute to tumor metastasis (63, 64).

By filtering DEGs from nontumor cells and primary tumor cells, we restricted those DEGs specific to 
metastatic tumor cells. In total, we identified 47 overlapping genes that were significantly upregulated in the 
metastatic tumor cells (Figure 5B and Supplemental Figure 6, A and B). To test if  the gene signature is indic-
ative of  tumor progression and disease stage, these gene signatures were then applied to publicly available NB 
bulk RNA-Seq data. The average metastasis scores were calculated from the bulk RNA-Seq data as described 
in Methods. The metastatic signature score was significantly increased in patients with high-risk and stage 4 
NB (Figure 5C and Supplemental Figure 6C), and a higher expression of  the metastatic signature score was 
associated with worse overall survival outcomes in 3 independent NB cohorts (Supplemental Figure 6D).

We next used a publicly available CRISPR Screen data set (DepMap) (65) on NB cell lines to narrow 
the list of  genes that could predict survival outcome. Notably, we observed that AHCY, PPAT, and GCSH 
show a lower effect score closed to MYCN (Figure 5D), suggesting that the KO or suppression of  those 
genes have a negative effect on the growth or survival of  NB cell lines. MYCN amplification is one of  the 
strongest predictors of  poor prognosis in patients with NB (66). We hypothesized that AHCY, PPAT, and 
GCSH could, therefore, also be prognostic biomarkers. Survival analysis show that upregulation of  AHCY, 
PPAT, and GCSH alone are significantly associated with worse patient survival in 3 independent NB patient 
cohorts (Figure 5E). These genes could distinguish primary tumors from metastatic tumors, suggesting 
that they are involved in the metastatic process and may, therefore, predict tumors with a high likelihood 
to metastasize to the BM. Next, we therefore explored the therapeutic effect of  these genes in a MYCN 
amplified NB cell line (TET21N). Here, we found that knockdown of  the AHCY gene by short hairpin 
RNA (shRNA) significantly impaired the growth of  NB cells in vitro (Figure 5, F and G). The AHCY gene 
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Figure 4. Characterization of B and NK cell subpopulations. (A) UMAP embedding of NK cells, color-coded by the cell subtypes. (B) Dot plot signi-
fying marker gene expression across different NK cell subpopulations. The color represents scaled average expression of marker genes in each cell 
type, and the size indicates the proportion of cells expressing marker genes. (C) Box plot illustrating proportion of NK cell subpopulations in NB bone 
metastatic (n = 6) and NB bone nonmetastatic (n = 5) samples. Statistics significances are accessed using a 2-sided Wilcoxon ranked-sum test. For 
box plot, the center line represents the median, box limits represent upper and lower quartiles, and whiskers depicts 1.5 × the interquartile range 
(IQR). (D) Bar plot showing number of DEGs (adjust P < 0.05) for each NK cell subpopulation comparing NB bone metastatic and NB bone nonmeta-
static samples. (E) Gene ontology showing the biological processes enriched in top 200 downregulated genes of CD56bright NK cells comparing NB bone 
metastatic with NB bone nonmetastatic tumor. The color represents scaled average proportion marker genes in each cell, and the size indicates the 
number of CD56bright cells. (F) Violin plots showing scaled log-normalized expression values of key genes in CD56bright cell. A 2-sided Wilcoxon ranked-
sum test was used for statistical analysis (*P < 0.05). ****P < 0.0001. (G) UMAP embedding demonstrating B cell subpopulations (left) and sample 
fraction (right). (H) Expression of key marker genes for B cell subpopulations.
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Figure 5. Metastatic signature predicts neuroblastoma patient overall survival. (A) Gene set enrichment (GSEA) plot depicting the enrichment path-
ways of genes upregulated in bone metastatic tumor cells against to primary NB tumor cells. (B) A Venn diagram illustrating the overlap of upregulated 
genes in bone metastatic tumor cells compared with non-malignant cells and primary NB tumor cells (see method). (C) Boxplot representing metastatic 
signature score in low-risk (n = 273) and high-risk (n = 172) patients with NB (GSE49711). Significance was assessed using 2-sided Wilcoxon ranked-sum 
test (***P < 0.001). (D) Boxplot showing the CRIPSR screen effect score of metastatic signature genes in neuroblastoma cell lines (n = 35). Effect Scores 
indicate whether gene knockout (gene loss) has a positive or negative effect on the growth or survival of cancer cells. (E) KM survival curves showing 
patients with NB with higher metastatic signature gene expression have worse overall survival in 3 independent NB data sets (GSE49711 n = 488, Target 
n = 247, GSE16476 n = 76). Patients were stratified into 2 groups based on the gene expression (binary: top 25% versus bottom 25%). Statistics are 
accessed by 2-side log-rank test. (F) Boxplot showing cell growth of neuroblastoma cell line (TET21N) on day3 after shRNA infection (n = 3). (G) Barplot 
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codes for the enzyme S-Adenosyl-L-homocysteine hydrolase. Knocking down this gene has been shown to 
lead to DNA damage and cell cycle arrest (67, 68), suggesting that the knockdown effects observed in NB 
cell survival might be due to this mechanism. Targeting AHCY could be a therapeutic approach for patients 
with high-risk NB and warrants further studies.

Additionally, we performed cell-to-cell interaction analysis to explore how metastatic tumor cells might 
interact with other cells within the metastatic BM microenvironment (Figure 5H). Ligand-receptor analysis 
uncovered several significant interaction channels, including ligands that were distinctively upregulated in 
the tumor cells such as CD24, VEGFA, DLL3, and DLK1 (Figure 5I and Supplemental Figure 6E). Interest-
ingly, tumor cells expressing CD24 may promote immune evasion through its interaction with the inhibito-
ry receptor SIGLEC10 expressed by macrophages (69). Our data show that FGFRL1 is expressed in mac-
rophages, and FGF2 has been shown to regulate programming of  TAM and to control tumor growth and 
antitumor immunity (70). We also observed an increase in Notch signaling pathway receptors NOTCH1 
and NOTCH2 expressed in Neutrophil-2, while NOTCH2 and NOTCH4 were expressed in macrophages. 
The Notch signaling pathway has been shown to regulate various aspects of  the tumor immune response, 
such as immune differentiation and maturation, as well as recruitment of  neutrophils and regulation of  
immunosuppressive TAM (36). Furthermore, our data demonstrate high expression of  Notch ligands 
(DLL3, DLK1) in tumor cells, indicating a possible role for these ligands in the recruitment and regulation 
of  TAN and TAM within the bone metastatic microenvironment. Taken together, this analysis uncovers 
potential communication channels between tumor cells and the surrounding microenvironment and reveals 
a metastatic signature that was significantly associated with worse patient survival.

Discussion
NB is the most common and deadliest tumor of  infancy, and BM metastasis is linked to poor progno-
sis with limited therapy options (5). In this study, single-cell transcriptomics was used to characterize the 
microenvironment of  metastatic BM in patients with NB. We provide a single-cell landscape of  tumor 
cells and immune cells within the BM tumor microenvironment. Several distinct cell types were enriched 
in metastatic BM, forming an immune-suppressive microenvironment with a composition of  TAN, Tregs, 
and exhausted T cells. These immune cells showed dysregulated transcriptional profiles and upregulation 
of  pathways that are associated with suppressing the antitumor immune response and might, therefore, 
contribute to metastatic growth in the BM. Our findings provide insight into the complex microenviron-
ment of  metastatic BM in human NB.

Immune suppression within the BM seems to be a key feature in our patient cohort. Immune sup-
pression can be caused by various factors, including tumor-secreted cytokines and chemokines, increased 
expression of  immune checkpoint molecules, alterations in NK cell function, and infiltration of  suppres-
sive immune cells such as TAM and Tregs (12, 71). TAM are known to produce proteolytic enzymes that 
degrade the bone matrix, allowing the tumor cells to penetrate and migrate to the bone (72). Within the 
myeloid lineage, we demonstrated an increase in immune-suppressive myeloid cells such as TAM and TAN 
in metastatic BM samples. This finding is in line with our previous work on adult prostate cancer demon-
strating increased TAM in the bone metastatic niche (21).

Of note, we identified 2 TAN subpopulations exclusively enriched in metastatic NB BM. In tumors, neu-
trophils are often found at the tumor site and are thought to promote the growth and spread of tumors by 
providing a favorable environment for tumor cells (73). Our data show that neutrophils exhibited suppression 
of antitumor immune responses and produced matrix metalloproteinases that can act to promote angiogenesis 
and invasion. In addition, genes related to neutrophil migration and survival — such as NAMPT, CMTM2, and 
CD177 — were also increased in expression in Neutrophil-2. Thus, we hypothesize the TAN infiltration might 
play an important role in dissemination and immune cell escape of metastatic tumor cells in the BM of patients 
with NB. Neutrophil recruitment to the tumor microenvironment is mediated by multiple mediators, including 
cytokines, chemokines, and growth factors. We observed increased expression of receptors such as CXCR2, 

showing relative mRNA expression (n = 3). Data are expressed using the 2−ΔΔCt method. Gene expression levels were normalized to the sh control. Sta-
tistical significance determined using 2-sided t-test. (H) Overview of potential ligand-receptor interactions of cell subpopulations. (I) Dot plot showing 
significant ligand (tumor cells and T cell subsets) and receptor (myeloid cell subsets) expression. Dot size indicates expression ratio, color represents 
average gene expression (Methods). Boxplots include center line, median; box limits, upper and lower quartiles; whiskers are highest and lowest values 
no greater than 1.5× IQR. ****P < 0.0001.
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CXCR1, and CSF3R in TAN that have been reported to be crucial for neutrophil recruitment to the tumor 
parenchyma (34, 35, 74). In addition, expression trajectory analysis of TAN development indicated continuous 
TAN lineage trajectory within the metastatic BM microenvironment, suggesting that these TAN are modified 
by tumor-mediated signals to shape them into immunosuppressive neutrophils. Future orthogonal validation 
experiments are needed to provide conclusive evidence regarding the role of TAN in the metastatic NB BM.

Besides TAM and TAN, we also observed an increase in exhausted CTLs and dysregulated NK cells in 
the metastatic BM. T and NK cell gene expression patters showed increased expression of  immune check-
point molecules and decreased expression of  cell activation molecules. Immunotherapy has been shown to 
be effective in treating a number of  different cancer types, including melanoma, lung cancer, and bladder 
cancer (75). Our data demonstrate that the metastatic BM in NB have accumulated CTLs, suggesting a 
potential target modulation of  these cells to improve immunotherapy in patients with bone metastatic NB.

The high degree of  NB tumor cell heterogeneity has been the topic of  considerable research focus 
(6, 9). NB tumors comprise diverse populations of  cells with different genetic backgrounds; these cell 
populations affect progression, metastatic potential, and treatment response. Due to the limited number 
of  patients and tumor cells, we cannot comment on tumor cell heterogeneity. However, a comparison 
of  metastatic BM tumor cells with primary localized tumor cells identified a set of  upregulated genes, 
suggesting that these genes may be involved in metastatic progression. These also defined a metastatic 
signature that could accurately predict overall survival in patients with NB.

Although our analysis presents a good representation of  immune and tumor cells in the BM metastatic 
niche, it is important to consider a few potential limitations to our study. One of  the main limitations is 
lack of  validation. Although we performed functional interpretation and protein validation of  certain cell 
types, validation in more patient samples will be necessary to further substantiate these findings. CRISPR 
Screen data reveal varying effect scores in NB cell lines; it is important to validate these results in a wider 
range of  cell lines to fully understand the therapeutic implications. In addition, our analysis can’t determine 
the cause-and-effect relationship of  TME remodeling. Metastasis is a dynamic process that spans multiple 
organs and occurs over extended periods of  time (76, 77). It is challenging to discern a definitive cause-
and-effect relationship in our current experiment design. Furthermore, cell-to-cell interaction analysis was 
built on single-cell data, and it is crucial to perform spatial transcriptomic data analysis to understand how 
immune cells infiltrate tumors and to identify targets that can modulate the interaction between immune 
cells and tumor cells in the metastatic BM microenvironment. Nevertheless, in spite of  these difficulties, we 
managed to uncover notable disparities that could have a profound clinical implication in discerning the 
effect of  immune and tumor cells on the survival of  patients with metastatic NB.

Overall, our study provides an important step forward in understanding the complexity of  the tumor 
microenvironment, specifically in the metastatic BM in patients with NB. We believe that our systems biology 
approach to understand metastatic NB provides a rich resource for the further study of  metastatic disease.

Methods
Sex as a biological variant. The participants in our study were randomly selected, and it included both male 
and female patients with NB. Sex was not considered as a biological variable.

Surgical approach and collection of  tumor and BM specimens. BM aspirates were collected from 8 patients 
diagnosed with metastatic NB and 7 patients with nonmetastatic disease. Bone tumor tissue was surgically 
resected from the bone. All patients consented to having their BM and tissue used for research purposes.

Samples were taken from each patient while they were in the prone position under general anesthesia, 
as their spine was approached from the back.

BM processing. BM samples were filtered through a 70 μm filter and were then centrifuged at 600g for 7 
minutes at 4°C. Plasma was collected, and erythrocytes were removed using ACK Lysing buffer (Quality 
Biological). The cells were resuspended in Media 199 supplemented with 2% (v/v) FBS for further analysis.

Dissociation of  tissues into single cells of  bone tumor. All samples were collected in Media 199 supplemented 
with 2% (v/v) FBS (Gibco, Thermo Fisher Scientific). Tumor pieces measuring 1 mm3 were cut using a 
70 mm filter cap, followed by enzymatic dissociation at 37°C with shaking at 120 rpm for 45 minutes. The 
dissociation solution contained Collagenase I, II, III, and IV (all 1 mg/mL; Worthington) and Dispase (2 
mg/mL; Gibco, Thermo Fisher Scientific) as well as RNase inhibitors (RNasin [Promega] and RNaseOUT 
[Gibco, Thermo Fisher Scientific]). Erythrocytes were removed using ACK Lysing buffer, and cells were 
then resuspended in Media 199 with 2% (v/v) FBS for further analysis.
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FACS of  human samples for scRNA-Seq. Single cells from tumor and BM were subjected to RBC lysis and 
then surface stained with anti–CD235-PE (BioLegend, catalog 306609) for 30 minutes at 4°C. Afterward, 
cells were washed with 2% FBS-PBS (v/v) and DAPI stained (1 μg/mL). Live and nonerythroid cells 
(DAPI–CD235–) were flow sorted on a BD FACS Aria III instrument with a 100 μm nozzle (BD Bioscienc-
es). Flow cytometry data were then analyzed using FlowJo software (Tree Star Inc.).

Massively parallel scRNA-Seq. Single cells were encapsulated into emulsion droplets using the Chromium 
Controller (10X Genomics). scRNA-Seq libraries were prepared using the Chromium Single Cell 3’ v2 
Reagent Kit, following the manufacturer protocol. After sorting, sample volumes were reduced and cells 
were observed under a microscope and counted with a hemocytometer. Approximately 6,000 cells were 
then loaded into every channel. cDNA and library preparation was conducted on a C1000 Touch Thermal 
cycler with a 96-Deep Well Reaction Module (Bio-Rad). Amplified cDNA and final libraries were assessed 
using an Agilent BioAnalyzer and a High Sensitivity DNA Kit (Agilent Technologies). Individual libraries 
were diluted to 4 nM and combined for sequencing. The pools were sequenced with 75 cycle run kits (26 
bp, read 1; 8 bp, index 1; and 55 bp, read 2) on the NextSeq 500 Sequencing System (Illumina), achieving 
an approximately 70%–80% saturation level.

Processing and analyzing scRNA-Seq data. Using Cell Ranger (v.3.0.1) software, the raw scRNA-Seq data 
were aligned to the human GRCh38 genome with default parameters, and low-quality cells with fewer than 
600 total UMIs detected were filtered out. Subsequently, cells were further analyzed with Scrublet (78), and 
cells with a Scrublet score above 0.4 were excluded. In total, 37,406 cells from 15 samples were obtained 
(Supplemental Table 2). Conos (22) was then used (k = 15, k.self  = 5, matching.method = ‘mNN’, metric 
= ‘angular’, space = ‘PCA’) to integrate the multiple scRNA-Seq data sets, and principal component anal-
ysis was performed on the 2,000 genes with the most variable expression. Leiden clustering was used to 
build joint cell clusters across the entire data set collection, and UMAP embedding was estimated using the 
embedGraph function in Conos with default parameter settings.

Identifying the major cell types and cell subpopulations. To identify the major cell types present in both the 
NB nonmetastatic and bone metastatic BM samples, we applied sets of  well-established marker genes for 
each cell type to annotate the cell types based on the most highly expressed genes. The detailed gene list can 
be found in Supplemental Table 3. Furthermore, we used Conos to analyze cell subsets separately and iden-
tify any subclusters within the major cell types. Specifically, we extracted all myeloid cells (T cells/myeloid 
cells/B cells/NK cells), removed low-quality samples with less than 40 cells per cells, and realigned sepa-
rately using Conos with default parameters.

Calculation of  gene set signature scores. Calculation of  Gene Set Signature Scores involves analyzing the 
expression levels of  individual genes in a given set to determine the overall effect of  a given gene set on a 
biological system. This is done by measuring the expression levels of  each gene in the gene set and then 
combining them (average normalized gene expression) to create a score that reflects the overall effect of  
the gene set on the system. T cell exhaustion and Treg activity signature genes are listed in Supplemental 
Table 4. The statistical significance was assessed using Wilcoxon ranked-sum test.

Differential gene expression analysis. For differential expression analysis between cell types, the Wilcoxon 
ranked-sum test, implemented by the getDifferentialGenes() function from Conos, was used to identify 
marker genes of  each cell cluster. Genes were considered differentially expressed if  the P value–determined 
Z score was greater than 3. For differential expression analysis between sample fractions (e.g., nonmeta-
static NK versus metastatic NK), the estimatePerCellTypeDE function in Cacoa (79) was utilized. This 
first formed “mini-bulk” (or meta-cell) RNA-Seq measurements by combining all molecules measured for 
each gene in each subpopulation in each sample. Subsequently, differential gene expression analysis was 
performed using DESeq2 (80) with default settings. A minimal number of  10 cells (of  the selected cell type) 
was required for a sample to be included in the comparison.

Defining metastatic gene signature. To identify the malignant cells, we analyze DEGs. Malignant cells 
were marked by high expression of  NB tumorigenesis genes (PHOX2B, HAND2, STMN2, and KCNQ2). 
Next, we inferred large-scale chromosomal CNVs with inferCNV, which uses a moving averaged expres-
sion profile across chromosomal intervals (23), comparing data with normal reference data. We considered 
immune cells as the reference cells. By comparing metastatic tumor cells with primary NB tumor cells, 
and requiring genes exclusively expressed in tumor cells, we identified a 47-gene set metastatic signature 
(Supplemental Table 5). getDifferentialGenes() function from Conos (22) was used to calculate DEGs, and 
P value–determined Z scores (cutoff  of  10) were used to filter upregulated gene in metastatic tumor cells.
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Align metastatic BM data with primary NB scRNA-Seq data. For the joint alignment analysis with primary 
NB data, we downloaded raw count matrix and cell annotation from GSE147766 (24). Conos was used to 
integrate multiple samples together with default parameter settings.

Survival analysis. To test if  a given signature predicts survival, we first computed the average expression of the 
signature in each tumor based on the bulk RNA-Seq data. Next, we stratified the patients into 2 groups accord-
ing to the average expression of the signature: high or low expression correspond to the top or bottom 25% of the 
population, respectively. We used log-rank test to examine if  there was a significant difference between patient 
groups in terms of their survival. R package survival and survminer were used to draw Kaplan-Meier (KM) plot.

Gene Ontology and GSEA. The clusterProfiler R package (81) was used to test for enriched Gene Ontol-
ogy (GO) Biological Processes or KEGG Pathways in gene sets, using default parameters. To identify the 
enriched Biological Processes GO Terms, the approach above was applied to the top 300 upregulated genes 
determined by the estimatePerCellTypeDE functions of  Cacoa (79). For GSEA, we ranked genes by Z 
score, and GSEA function from clusterProfiler was used to test enriched cancer hallmark pathways.

Trajectory analysis. We use Slingshot (82) and crestree (83) to perform trajectory analysis of  neutrophil 
development. Specifically, we extracted progenitor monocytes, Neutrophil-1 and Neutrophil-2 cells from 
myeloid lineage. The pseudotime was estimated using slingshot() function from Slingshot; then, we analyzed 
genes that were significantly associated with pseudotime using test.associated.genes() function from crestree.

Ligand and receptor analysis. We inferred ligand-receptor interactions using a method similar to that 
described in a previous study (84). From the CellDBphone database, we collected 1,263 well-annotated 
ligand-receptor pairs. We first screened each ligand and receptor based on their expression levels in each 
cell type, requiring that the gene be expressed in at least 10% of  the cells. Subsequently, we calculated the 
average expression of  ligand-receptor pairs across cell type pairs using normalized scRNA-Seq data. The 
product of  the average expression of  the ligand in cell type A and the average expression of  the receptor in 
cell type B was used to measure the expression of  the ligand-receptor pair. To evaluate the robustness and 
statistical significance of  the ligand-receptor pairs, we constructed a null distribution for average ligand-re-
ceptor expression by shuffling cell identities in the aggregated data and then calculating the ligand-receptor 
average pair expression across 1,000 permutations of  randomized cell identities. The P value was the num-
ber of  randomized pairs that exceeded the observed data. To prioritize functional ligand-receptor interac-
tion pairs in tumor tissue, we further conducted a differential gene expression analysis, requiring ligand 
exclusively expressed in tumor cells. getDifferentialGenes() function from Conos was used in differential 
gene expression analysis. The ligand-receptor list can be found in Supplemental Table 6.

Flow cytometry analysis. Flow cytometric validation was performed on nonmetastatic and NB meta-
static BM samples that were matched with the scRNA-Seq data. Matched sampling enables the direct 
comparison and validation of  scRNA-Seq data at a protein level, while controlling for interindividu-
al variabilities. Cells were thawed at 37°C and washed with prewarmed media RPMI supplemented 
with 2% (v/v) FBS; blocking was performed with anti–human fc block (BD Pharmingen, 564219) for 
10 minutes. Subsequently, cells were stained for surface markers with antibodies diluted 1:200 in 2% 
FBS-PBS (v/v) for 30 minutes at 4°C while protected from light, as indicated in the antibody panels 
provided in Supplemental Table 7. After the antibody incubation, cells were washed with 2% FBS-PBS 
(v/v), followed by live/dead fixable dead cell staining for 10 minutes; they were then washed with PBS. 
Cells were fixed and permeabilized for 30 minutes with Cytofix/Cytoperm before being washed with 1× 
Perm/Wash buffer (BD Biosciences). Unstained cells and FMOs served as negative controls, and Ultra-
Comp eBeads Plus Compensation Beads (Invitrogen, 01-3333-42) were used for compensation of  each 
antibody. Data were acquired in Sony ID7000 Spectral Analyzer and analyzed with FlowJo software (v 
10.9.0) and GraphPad Prism. Gating strategy is presented in Supplemental Figure 1D and Supplemental 
Figure 3E. For the tumor cell panel, harnessing the same tumor surface markers (CD276, GD2, CD24, 
CD56), we designed a flow cytometry staining panel to identify, detect, and quantify the proportion of  
tumor cells in metastatic BM samples — BM1 and BM3 — that were matched with the scRNA-Seq data.

Samples were thawed at 37°C and washed with prewarmed media RPMI supplemented with 2% (v/v) 
FBS; blocking was performed with anti–human fc block (BD Pharmingen, 564219) for 10 minutes. Subse-
quently, cells were stained for surface markers with antibodies diluted in 2% FBS-PBS (v/v) for 30 minutes at 
4°C while protected from light, as indicated in the antibody panels provided in Supplemental Table 7. After the 
antibody incubation, cells were washed with 2% FBS-PBS (v/v), followed by DAPI staining, for subsequent 
data acquisition in BD FACSAria Fusion and analysis with FlowJo software (v 10.9.0).
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Quantitative PCR (qPCR). Total RNA from TET21N cells was extracted using RNeasy Micro Kit 
(Qiagen, 74004). cDNA was synthesized from total RNA using iScript cDNA Synthesis Kit (Bio-Rad, 
1708891). qPCR was performed using iTaq Universal SYBR Green Supermix (Bio-Rad, 1725121) on a 
CFX96 Real-Time System (Bio-Rad). The data were analyzed using the 2–ΔΔCt method. ACTB was used as 
housekeeping genes. The following primers were used for qPCR analysis: ACTB, 5′-AGAGCTACGAGCT-
GCCTGAC-3′, 5′-AGCACTGTGTTGGCGTACAG-3′; AHCY, 5′-ATCCTCAAGGTGCCTGCCAT-
CA-3′, 5′-CGGCAATCATCACATCTGTGGC-3′; PPAT, 5′-GCGATTGAAGCACCTGTGGATG-3′, 
5′-CGGTTTTTACACAGCACCTCCAC-3′; and GCSH, 5′-GGCATTGGAACAGTGGGAATCAG-3′, 
5′-CACACTTTCCAAAGCACCAAACTC-3′.

Lentivirus for knockdown. Lentiviral constructs were transfected with VSVG and Δ8.9 (packaging) to 
HEK293T cells using FuGENE6 (Promega, E2692). The viral supernatant was then concentrated using 
Lenti-X (TaKaRa, 631232) and transduced into recipient cells with 8 μg/mL polybrene. After transduction, 
the infected cells were selected with puromycin for 2 days. Knockdown experiments used pLKO-Tet-On 
vector (Addgene, 21915). In total, 1 μg/mL doxycycline (DOX) was used to induce knockdown. RNA was 
extracted on day 5 for qPCR (Supplemental Table 8). The following shRNAs sequences were used. shAH-
CY, 5′-CACAGGCTGTATTGACATCAT-3′; shPPAT, 5′-CAATACCATCTCACCTATAAT-3′; shGCSH, 
5′-GTGAACTCTATTCTCCTTTAT-3′. Control (Renilla), 5′-TAGATAAGCATTATAATTCCT-3′.

Statistics. P < 0.05 was considered significant. Two-sided Wilcoxon ranked-sum test was used to assess 
significance in bulk RNA-Seq and scRNA-Seq analyses unless otherwise stated.

Study approval. Patient material and all patient tissue collection was carried out with IRB approval, 
Etikprövningsmyndigheten. Diary number (registration): 2009/1369-31/1 and 2022-07254-01.

Data availability. Raw sequencing data and processed data in this paper are available under the 
accession no. GSE220946. For the joint alignment analysis with primary NB data, we downloaded raw 
count matrix and cell annotation from GSE147766 (24) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE147766). Moreover, NB bulk RNA-Seq data were download from GSE16476 (85), 
GSE49711 (86), and cBioPortal (87). (https://cbioportal-datahub.s3.amazonaws.com/nbl_target_2018_
pub.tar.gz). The codes generated during this study are available at GitHub repository (https://github.
com/shenglinmei/NB.bone.Met) (commit ID: 27b633c). Values for all data points in graphs are reported 
in the Supporting Data Values file.

Author contributions
Co-first authorship order was based on the timeline of  contributions. Conceptualization was contributed by 
SM, AMA, PK, JIJ, DBS, PVK, and NB. Sample collection methodology and surgeries were contributed 
by AMA, BTE, PK, and JS. Investigation was contributed by SM, AMA, BTE, IMG, PVK, and NB. Com-
putational investigation and qPCR analysis were contributed by TZ, XL, and NEJ. FACS analysis was con-
tributed by AMA, BTE, AP, SM, TKO, ORB, PVK, and NB. Writing of  the original draft was contributed 
by SM, AMA, and NB. Review and editing of  the manuscript were contributed by SM, AMA, BTE, BMV, 
HS, PK, MW, ORB, JS, JIJ, PJS, DBS, and NB. All authors read, edited, and approved the manuscript. 
Funding acquisition, resources, and supervision were contributed by PK and NB.

Acknowledgments
We are particularly indebted to our patients and their clinical care teams. We gratefully acknowledge sup-
port from the Swedish Childhood Cancer Foundation, the Swedish Cancer Society, the Cancer Research 
Funds of  Radiumhemmet (The Cancer Society in Stockholm/the King Gustaf  V Jubilee Fund), and the 
Wenner-Gren foundation.

Address correspondence to: Ninib Baryawno, Wideströmska, Childhood Cancer Research Unit, Depart-
ment of  Women’s & Children’s Health, Karolinska Institutet, Tomtebodavägen 18, 171 65 Solna, Sweden. 
Phone: 46.0.76.589.77.40; Email: n.baryawno@ki.se. Or to: Shenglin Mei, Center for Regenerative Medi-
cine, Massachusetts General Hospital & Harvard Medical School, 185 Cambridge St., Boston, Massachu-
setts 02114, USA. Phone: 617.699.9071; Email: SMEI8@mgh.harvard.edu.

PVK’s present address is: Altos Labs, San Diego, California, USA.



1 6

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(6):e173337  https://doi.org/10.1172/jci.insight.173337

 1. Johnsen JI, et al. Neuroblastoma-a neural crest derived embryonal malignancy. Front Mol Neurosci. 2019;12:9.
 2. Lazic D, et al. Landscape of  bone marrow metastasis in human neuroblastoma unraveled by transcriptomics and deep multiplex 

imaging. Cancers (Basel). 2021;13(17):4311.
 3. Pinto NR, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33(27):3008–3017.
 4. Basta NO, et al. Factors associated with recurrence and survival length following relapse in patients with neuroblastoma. Br J 

Cancer. 2016;115(9):1048–1057.
 5. Smith V, Foster J. High-risk neuroblastoma treatment review. Children (Basel). 2018;5(9):114.
 6. Dong R, et al. Single-cell characterization of  malignant phenotypes and developmental trajectories of  adrenal neuroblastoma. 

Cancer Cell. 2020;38(5):716–733.
 7. Jansky S, et al. Single-cell transcriptomic analyses provide insights into the developmental origins of  neuroblastoma. Nat Genet. 

2021;53(5):683–693.
 8. Furlan A, et al. Multipotent peripheral glial cells generate neuroendocrine cells of  the adrenal medulla. Science. 

2017;357(6346):eaal3753.
 9. Kameneva P, et al. Single-cell transcriptomics of  human embryos identifies multiple sympathoblast lineages with potential 

implications for neuroblastoma origin. Nat Genet. 2021;53(5):694–706.
 10. Boeva V, et al. Heterogeneity of  neuroblastoma cell identity defined by transcriptional circuitries. Nat Genet. 2017;49(9):1408–1413.
 11. Mina M, et al. Tumor-infiltrating T lymphocytes improve clinical outcome of  therapy-resistant neuroblastoma. Oncoimmunology. 

2015;4(9):e1019981.
 12. Wienke J, et al. The immune landscape of  neuroblastoma: challenges and opportunities for novel therapeutic strategies in pedi-

atric oncology. Eur J Cancer. 2021;144:123–150.
 13. Valteau D, et al. T-cell receptor repertoire in neuroblastoma patients. Cancer Res. 1996;56(2):362–369.
 14. Wei JS, et al. Clinically relevant cytotoxic immune cell signatures and clonal expansion of  T-cell receptors in high-risk 

MYCN-not-amplified human neuroblastoma. Clin Cancer Res. 2018;24(22):5673–5684.
 15. Frosch J, et al. Combined effects of  myeloid cells in the neuroblastoma tumor microenvironment. Cancers (Basel). 

2021;13(7):1743.
 16. Carlson L-M, et al. Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of  neuro-

blastoma. Carcinogenesis. 2013;34(5):1081–1088.
 17. Yu AL, et al. Long-term follow-up of  a phase III study of  ch14.18 (dinutuximab) + cytokine immunotherapy in children with 

high-risk neuroblastoma: COG study ANBL0032. Clin Cancer Res. 2021;27(8):2179–2189.
 18. Fetahu IS, et al. Single-cell transcriptomics and epigenomics unravel the role of  monocytes in neuroblastoma bone marrow 

metastasis. Nat Commun. 2023;14(1):3620.
 19. Zhao E, et al. Bone marrow and the control of  immunity. Cell Mol Immunol. 2012;9(1):11–19.
 20. Disis ML. Immune regulation of  cancer. J Clin Oncol. 2010;28(29):4531–4538.
 21. Kfoury Y, et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 

2021;39(11):1464–1478.
 22. Barkas N, et al. Joint analysis of  heterogeneous single-cell RNA-seq dataset collections. Nat Methods. 2019;16(8):695–698.
 23. Tirosh I, et al. Dissecting the multicellular ecosystem of  metastatic melanoma by single-cell RNA-seq. Science. 

2016;352(6282):189–196.
 24. Verhoeven BM, et al. The immune cell atlas of  human neuroblastoma. Cell Rep Med. 2022;3(6):100657.
 25. Asgharzadeh S, et al. Clinical significance of  tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol. 

2012;30(28):3525–3532.
 26. Brosseau C, et al. CD9 tetraspanin: a new pathway for the regulation of  inflammation? Front Immunol. 2018;9:2316.
 27. Xue R, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141–147.
 28. Salcher S, et al. High-resolution single-cell atlas reveals diversity and plasticity of  tissue-resident neutrophils in non-small cell 

lung cancer. Cancer Cell. 2022;40(12):1503–1520.
 29. Wang L, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in 

pancreatic tumour microenvironment. Gut. 2023;72(5):958–971.
 30. Bergers G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2(10):737–744.
 31. Itatani Y, et al. Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model 

of  colorectal cancer. Proc Natl Acad Sci U S A. 2020;117(35):21598–21608.
 32. Condamine T, et al. Lectin-type oxidized LDL receptor-1 distinguishes population of  human polymorphonuclear myeloid-de-

rived suppressor cells in cancer patients. Sci Immunol. 2016;1(2):aaf8943.
 33. Giese MA, et al. Neutrophil plasticity in the tumor microenvironment. Blood. 2018;133(20):2159–2167.
 34. Chao T, et al. CXCR2-dependent accumulation of  tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal 

adenocarcinoma. Cancer Immunol Res. 2016;4(11):968–982.
 35. Han Z-J, et al. Roles of  the CXCL8-CXCR1/2 axis in the tumor microenvironment and immunotherapy. Molecules. 

2021;27(1):137.
 36. Yang M, et al. Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through Jagged2 activa-

tion in ovarian cancer. Br J Cancer. 2020;123(9):1404–1416.
 37. Bekes EM, et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of  tumor 

angiogenesis and efficiency of  malignant cell intravasation. Am J Pathol. 2011;179(3):1455–1470.
 38. Quintero-Fabián S, et al. Role of  matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 2019;9:1370.
 39. Xie X, et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol. 

2020;21(9):1119–1133.
 40. Grieshaber-Bouyer R, et al. The neutrotime transcriptional signature defines a single continuum of  neutrophils across biological 

compartments. Nat Commun. 2021;12(1):2856.
 41. Pylaeva E, et al. NAMPT signaling is critical for the proangiogenic activity of  tumor-associated neutrophils. Int J Cancer. 

2019;144(1):136–149.



1 7

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(6):e173337  https://doi.org/10.1172/jci.insight.173337

 42. Ge Y-Y, et al. Possible effects of  chemokine-like factor-like MARVEL transmembrane domain-containing family on antiphos-
pholipid syndrome. Chin Med J (Engl). 2021;134(14):1661–1668.

 43. Bai M, et al. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation. 
Blood. 2017;130(19):2092–2100.

 44. Ramos RN, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell. 
2022;185(7):1189–1207.

 45. Nakamura K, Smyth MJ. TREM2 marks tumor-associated macrophages. Signal Transduct Target Ther. 2020;5(1):233.
 46. Binnewies M, et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 

2021;37(3):109844.
 47. Weigelin B, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun. 

2021;12(1):5217.
 48. Alchahin AM, et al. A transcriptional metastatic signature predicts survival in clear cell renal cell carcinoma. Nat Commun. 

2022;13(1):5747.
 49. Huppert LA, et al. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol. 

2022;19(1):33–45.
 50. Sojka DK, et al. Mechanisms of  regulatory T-cell suppression – a diverse arsenal for a moving target. Immunology. 

2008;124(1):13–22.
 51. Freeman ZT, et al. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J Clin Invest. 

2020;130(3):1405–1416.
 52. Chen Q, et al. ICOS signal facilitates Foxp3 transcription to favor suppressive function of  regulatory T cells. Int J Med Sci. 

2018;15(7):666–673.
 53. Hinterbrandner M, et al. Tnfrsf4-expressing regulatory T cells promote immune escape of  chronic myeloid leukemia stem cells. 

JCI Insight. 2021;6(23):151797.
 54. Yang C, et al. Heterogeneity of  human bone marrow and blood natural killer cells defined by single-cell transcriptome. Nat Com-

mun. 2019;10(1):3931.
 55. Bauer S, et al. Activation of  NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 

1999;285(5428):727–729.
 56. Bouteiller PL, et al. CD160: a unique activating NK cell receptor. Immunol Lett. 2011;138(2):93–96.
 57. Clausen J, et al. Functional significance of  the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like 

T-cells. Immunobiology. 2003;207(2):85–93.
 58. Kamiya T, et al. Blocking expression of  inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest. 

2019;129(5):2094–2106.
 59. Jardine L, et al. Blood and immune development in human fetal bone marrow and Down syndrome. Nature. 

2021;598(7880):327–331.
 60. Morgan D, Tergaonkar V. Unraveling B cell trajectories at single cell resolution. Trends Immunol. 2022;43(3):210–229.
 61. Huang S, Zhou H. Role of  mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci. 2011;12(1):30–42.
 62. Moreno-Sánchez R, et al. Energy metabolism in tumor cells. FEBS J. 2007;274(6):1393–1418.
 63. Fares J, et al. Molecular principles of  metastasis: a hallmark of  cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.
 64. Hollern DP, et al. The E2F transcription factors regulate tumor development and metastasis in a mouse model of  metastatic 

breast cancer. Mol Cell Biol. 2014;34(17):3229–3243.
 65. Behan FM, et al. Prioritization of  cancer therapeutic targets using CRISPR–Cas9 screens. Nature. 2019;568(7753):511–516.
 66. Berbegall AP, et al. Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma study. Br J Cancer. 

2018;118(11):1502–1512.
 67. Belužić L, et al. Knock-down of  AHCY and depletion of  adenosine induces DNA damage and cell cycle arrest. Sci Rep. 

2018;8(1):14012.
 68. Park SJ, et al. Inhibition of  S-adenosylhomocysteine hydrolase decreases cell mobility and cell proliferation through cell cycle 

arrest. Am J Cancer Res. 2015;5(7):2127–2138.
 69. Barkal AA, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 

2019;572(7769):392–396.
 70. Im JH, et al. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat 

Commun. 2020;11(1):4064.
 71. Tie Y, et al. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15(1):61.
 72. Lin Y, et al. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol 

Oncol. 2019;12(1):76.
 73. Masucci MT, et al. Tumor associated neutrophils. Their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 

2019;9:1146.
 74. Jaillon S, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485–503.
 75. Ott PA, et al. A phase Ib trial of  personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-

small cell lung cancer, or bladder cancer. Cell. 2020;183(2):347–362.
 76. Quail DF, Joyce JA. Microenvironmental regulation of  tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437.
 77. Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–317.
 78. Wolock SL, et al. Scrublet: computational identification of  cell doublets in single-cell transcriptomic data. Cell Syst. 

2019;8(4):281–291.
 79. Petukhov V, et al. Case-control analysis of  single-cell RNA-seq studies [preprint]. https://doi.org/10.1101/2022.03.15.484475. 

Posted on bioRxiv March 18, 2022.
 80. Love MI, et al. Moderated estimation of  fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 

2014;15(12):550.
 81. Wu T, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141.



1 8

R E S O U R C E  A N D  T E C H N I C A L  A D V A N C E

JCI Insight 2024;9(6):e173337  https://doi.org/10.1172/jci.insight.173337

 82. Street K, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19(1):477.
 83. Soldatov R, et al. Spatiotemporal structure of  cell fate decisions in murine neural crest. Science. 2019;364(6444):eaas9536.
 84. Vento-Tormo R, et al. Single-cell reconstruction of  the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–353.
 85. Molenaar JJ, et al. Sequencing of  neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 

2012;483(7391):589–593.
 86. Wang C, et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abun-

dance. Nat Biotechnol. 2014;32(9):926–932.
 87. Ma X, et al. Pan-cancer genome and transcriptome analyses of  1,699 paediatric leukaemias and solid tumours. Nature. 

2018;555(7696):371–376.


	Graphical abstract

